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LETTER TO THE EDITOR 

Classification of the extended symmetries of 
Fokker-Planck equations 

G Cicognat and D VitaliS 
t Dipartimento di Fisica dell’Universita, Piazza Torricelli 2, 56100-Pisa, Italy 
$ Scuola Normale Superiore, Piazza dei Cavalieri, 56100-Pisa, Italy 

Received 25 October 1989 

Abstract. We obtain a complete classification of the possible types of the extended symmetry 
of any Fokker-Planck equation, together with a necessary and sufficient condition for each 
type. We give also the most general form (up to a change of variables) of the Lie generators 
of these symmetries, and a comparison with the case of the heat equation. 

Extended symmetry properties of the heat equation, and more generally of Fokker- 
Planck-type equations, which we will write here in the form ( t  E R, x E R, f = f ( x ,  t ) )  

have been the subject of several papers (see e.g. [ 1-51 and references therein). Referring 
to [ 6 , 7 ]  and the above quoted papers for further details, let us recall that the main 
purpose is to find the maximal group of local (continuous) symmetries of the equations 
and more precisely their Lie generators, which can be written in the general form 

where 6, 7, 4 are functions to be determined. In a recent paper [4], we provided a 
general condition on the functions a ( x ) ,  g(x) appearing in (1) in order that some 
non-trivial symmetry exists. In the present letter, we propose a natural classification 
of the possible symmetries admitted by the Fokker-Planck equations (1 1. Precisely, 
we obtain the three following cases. 

( I )  The symmetry group is (locally) isomorphic to the group of the heat equation; 
that is, there are four ‘non-trivial’ symmetry generators. This case happens if and only 
if there is a change of variables (x, t, f), not perturbing symmetry, which transforms 
(1) into the heat equation; this situation has been considered in [8] (see also [3,5]). 

(11) There are two non-trivial symmetry generators, leading to a symmetry subgroup 
of case I .  

(111) No non-trivial symmetry is allowed. 
We will give also the necessary and sufficient condition for each case, and the general 
form (up to a change of variables) of the symmetry generators. 
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Let us recall that it is easy to show [4,7] that the coefficient 4 in ( 2 )  has the general 
form 

d = a ( x ,  t ) + P ( x ,  tlf ( 3 )  

7' = C1 P = c2 (4) 

where a ( x ,  t )  is any solution of ( l ) ,  and that the case 

where c l ,  c2 are constants, gives rise to the 'trivial' symmetries generated by 

( 5 )  

which correspond precisely to the properties of ( 1 )  of being autonomous and linear. 
So we will be exclusively interested, from now on, in 'non-trivial' symmetries. First 
of all, let us assume in ( 1 )  

g = constant # 0. 

This is not a restriction; in fact this situation can be achieved by means of a change 
of variable [9] not altering the symmetry properties of the original equation. Using 
then our method [4], which in turn is based on standard Lie-Olver procedure [6,7], 
we obtain in this case (here and in the following subscripts mean differentiation) 

X 
5 ( x ,  t )  = c ( t ) g + -  7, 2 

where c = c( t )  is a function to be determined, and the necessary and sufficient condition 
for the existence of some symmetry is (equation (14) of [4]) 

c,, i- M x C =  - (2g)- ' (XT, , ,  +xM,T, + ~ M T , )  

M = -;( a2 + g2aX) , .  

(6) 

(6')  

where 

In order to fulfil condition ( 6 ) ,  assume now the following. 
(I)  a ( x )  satisfies the equation 

M,, = 0 (7)  

a2+ g2ax = p x 2 +  p ' x  + po (7') 
where p, p',  po are constants. We will give at the end a class of solutions of this 
equation. Then, differentiating (6) with respect to x, we get 

i.e. 

(8) 
3 P t  
4g 

Using again a procedure given in [4], we are now able to evaluate p ( x ,  t )  and then 

r,,, - 4prr = 0 C,, -pC =- 7,. 

obtain the following four symmetry generators: 
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a i  a e - 2 4 1  
U x+- e-2J;t- 

ax 
, - 2 s , t  

2 -  2 4  at 2( 2”;) 
PI p0 (CL’)’ g 2  a + T [ a ( x ) ( x + $ )  +~x2+-x+-+-- - -  6 2 4  Sp& 2 1 f a r  

Note that the constants p, p ’ ,  po may be zero (the modifications needed in (9 )  if p = 0 
can be easily performed starting from (8)). This is then the mosf general form of the 
symmetry generators in case I (up to a change of variables in the case g not constant) 
for the Fokker-Planck equation (1). 

It is interesting to remark that condition (7) is actually the necessary and sufficient 
condition in order that Fokker-Planck equation (1) can be transformed by means of 
a suitable change of variables, not altering symmetry, into the heat equation [ 5 , 8 ] .  
Therefore, taking into account also the foregoing analysis of the cases M,, f 0, we can 
directly see that the only way for a Fokker-Planck equation to possess four non-trivial 
symmetry generators is for it to be transformed into the heat equation. In this case, 
the symmetry group is then locally isomorphic to the group of the heat equation, which 
is obtained with p = p f = p o = O .  Another way to state the above property is the 
following: equation (1) can be also transformed into a Schrodinger equation with 
potential V ( x )  = a 2 + g 2 a ,  [9]. Then, condition (7)  allows precisely a polynomial, at 
most quadratic, potential. But it is also known, rather surprisingly [ 10, 113, that this 
Schrodinger equation has the same extended group (up to local isomorphism) as the 
free equation, with V ( x )  = 0. 

(11) Let us assume now M,, f. 0. Some straightforward calculations based on (6) 
and (6’) show that, if there are two constants v, vo such that the following equation 
for M ( x )  is satisfied 

(10) ( Mx + U)( x + vg) + 3 M  = 0 

then condition (6) can be fulfilled if and only if 

(11) 

When written in terms of a ( x ) ,  condition (10) reads 

V VI 
a 2 + g * a x = - ( x + v o ) 2 + -  + v2 

4 (x + v0l2 
where vI , v2 are constants. This situation gives rise to only two non-trivial symmetry 
generators, given by 

ax (12) 
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Note in particular that, if a ( x )  satisfies case I, then it is always possible to find a real 
number v such that a ( x )  satisfies also condition (10) of case 11; therefore the symmetry 
described by I1 is merely a subgroup of that of the case I. 

(111) If finally a ( x )  is such that neither (7), (7’) nor (IO), (IO’) are satisfied, then 
the only allowed solution of (6) is 

T r = C = O  

which is the case of non non-trivial symmetry. 

considering the following choice ( y ,  A, S I ,  S2 are constants): 
Interesting examples for each one of the three cases above can be obtained by 

A 
a ( x )  = yx+-+  SI g2 = A + S2.  (13) 

X 

If A = 0 or SI  = S 2  = 0, then condition (7),  (7‘) is satisfied and case I is recovered. Let 
A # 0; then if SI = O  but 6 2 # 0 ,  condition (lo), (10’) of case I1 holds true; if finally 
SI f 0, neither (7), (7’) nor (lo), (10’) are satisfied, and the symmetry is completely 
removed. Then 8, and S 2  acquire the clear interpetation of ‘symmetry-breaking para- 
meters’. Note that the choice (13) includes the so-called ‘linear’ Fokker-Planck 
equation ( A  = SI = 0, and the heat equation as well), and equations for Rayleigh-type 
processes ( A  # 0, 6, = 0, S2 = 0 or S2 = A ) .  

It can be useful to remark finally that all above calculations greatly simplify in the 
special (but rather common) case in which a ( x )  is an odd function (cf [l]). Then 
condition (6) immediately splits into two independent conditions involving c( t )  and 
T (  t )  separately, and the discussion of the three cases goes very easily. 
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